

 Navigation

 	
 index

 	
 next |

 	Susy 2.2.12 documentation

Susy 2.2.12

In a world of agile development and
super-tablet-multi-magic-laptop-phones,
the best layouts can’t be contained
in a single framework or technique.
CSS Libraries are a bloated mess of opinions
about how to do your job.
Why let the table-saw tell you where to put the kitchen?

Your markup, your design, your opinions | our math.

Note

These docs are focused on Susy 2.2.12.
See the Susy One documentation
for help with earlier versions of Susy.

Contents

	Getting Started

	Settings

	Shorthand

	Toolkit

	Susy One

	Upgrade Path

	DIY Susy

	Changelog

ToDo

These are the features we’re working on next:

	Add IE support to new syntax.

	Move SusyOne syntax onto new math/output modules.

	Add padding/margin options to the span mixin, for simpler output.

We’re always happy to hear your ideas as well.
Leave us a note on GitHub Issues [https://github.com/oddbird/susy/issues],
or fork our code, and submit a pull request!

Note

This isn’t neverland,
and Susy isn’t magic.
We’re still talking about web design
in a world where browsers disagree on implementation,
standards are not always the standard,
and your Sass code compiles into Boring Old CSS.

Don’t rely on Susy to solve all your problems —
the table-saw can’t build your house for you.
If you don’t understand what Susy is doing,
take a look at the output CSS files,
dig around, and find your own path.
Nothing here is sacred,
just a set of tools to help make your life easier.

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

Getting Started

The only requirement is Sass [http://sass-lang.com/],
but Susy was built to be part of the Compass [http://compass-style.org/] ecosystem,
and we recommend pairing with tools like
Breakpoint [http://breakpoint-sass.com/]
and Vertical Rhythms [http://compass-style.org/reference/compass/typography/vertical_rhythm/].

Compass is still required for the Susy One syntax.

Simple Install

command line
gem install susy

Bundler or Rails

Warning

In order to use Susy 2 with Rails you must update your Gemfile to use sass-rails ~> 5.0.0. This is because Susy 2 requires Sass >= 3.3 whilst Rails 4.1 and below include a version of sass-rails which does not support Sass 3.3.

Gemfile
gem 'sass-rails', '~> 4.0.3'
gem 'sass-rails', '~> 5.0.0'
gem 'susy'

If you want Compass:
gem 'compass-rails', '~> 2.0.0'

config/application.rb
require 'susy'

command line
bundle install

If you add Susy to an existing Rails app, follow the steps above, but use bundle update instead of bundle install.

command line
bundle update

Webpack and npm

Install using npm:

npm install susy sass-loader --save-dev

Make sure you have sass-loader [https://github.com/jtangelder/sass-loader] enabled in your webpack configuration:

// webpack.config.js
loaders: [
 {
 test: /\.scss$/,
 loader: 'style!css!sass'
 }
]

Start using Susy:

/* app.scss */
@import "~susy/sass/susy";

Gulp

Install susy with npm:

npm install susy --save-dev

Add Gulp Task:

// gulpfile.js
gulp.task('sass', function() {
 return gulp.src('scss/*.scss')
 .pipe(sass({
 outputStyle: 'compressed',
 includePaths: ['node_modules/susy/sass']
 }).on('error', sass.logError))
 .pipe(gulp.dest('dist/css'));
});

Start using Susy:

/* app.scss */
@import "susy";

Grunt (and Yeoman)

You can enable Susy in Grunt by adding a line to your Gruntfile.js.
You will need to add a line to either your Sass task or, if you’re using Compass, your Compass task.

To add Susy to the Sass task, edit your Gruntfile.js at the root level of your project
and look for the Sass-related rules. Add require: 'susy' inside the options object:

// Gruntfile.js
sass: {
 dist: {
 options: {
 style: 'expanded',
 require: 'susy'
 },
 files: {
 'css/style.css': 'scss/style.scss'
 }
 }
}

Assuming you’ve already installed Susy,
it will now be added to the project
and will not clash with Yeomans grunt rules.

To add Susy to the Compass task, edit your Gruntfile.js at the root level of your project
and look for the Compass-related rules. Add require: 'susy' inside the options object:

// Gruntfile.js
compass: {
 options: {
 require: 'susy',
 ...
 }
 }
}

Again, assuming you’ve already installed Susy,
it will now be added to the project.

Bower

command line
bower install susy --save

This will add the Susy repository to your bower_components directory or
create a bower_components directory for you.

// Import Susy
@import "bower_components/susy/sass/susy";

You can also import Susyone.

// Import Susy
@import "bower_components/susy/sass/susyone";

Compass

If you want to use Susy with Compass [http://compass-style.org/],
start by installing Compass [http://compass-style.org/install/].

Create a new Compass project:

command line
compass create --using susy <project name>

Alternatively, add Susy to a current project

command line
compass install susy

Manual Start

If you want to copy in the Sass files directly,
and skip any package management,
you can do that too.

	Download the zip file from GitHub.

	Copy the contents of the “sass” folder (feel free to remove everything else).

	Paste the files in your project “sass” folder (whatever you call it).

Version Management

When you work with bundled gems
across a number of different projects,
managing gem versions can become an issue.

If you are in a Ruby environment, check out RVM [https://rvm.io/].
In a Python environment, we recommend virtualenv [http://www.virtualenv.org/en/latest/index.html]
with these scripts [https://gist.github.com/1078601] added to your
“postactivate” and “predeactivate” files.

Once you have that in place,
Bundler [http://bundler.io/] can be used in either environment
to manage the actual installation and updating of the gems.

Quick Start

Once you have everything installed,
you can import Susy into your Sass files.

@import "susy";

The basic Susy layout is composed using two simple mixins:

@include container; // establish a layout context
@include span(<width>); // lay out your elements

For example:

body { @include container(80em); }
nav { @include span(25%); }

If you want to lay your elements out on a grid,
you can use the span mixin to calculate column widths:

nav { @include span(3 of 12); }

But you don’t have to do things the Susy way.
We give you direct access to the math,
so you can use it any way you like:

main {
 float: left;
 width: span(4);
 margin-left: span(2) + gutter();
 margin-right: gutter();
}

You can also establish global settings,
to configure Susy for your specific needs.
Create a $susy variable,
and add your settings as a map.

$susy: (
 columns: 12, // The number of columns in your grid
 gutters: 1/4, // The size of a gutter in relation to a single column
);

There are many more settings available
for customizing every aspect of your layout,
but this is just a quick-start guide.
Keep going to get the details.

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

Settings

The new syntax for Susy
is based around a number of settings
that can be written either as a Sass Map
or using a shorthand syntax.
These two definitions are interchangeable:

$susy: (
 columns: 12,
 gutters: 1/4,
 math: fluid,
 output: float,
 gutter-position: inside,
);

$shorthand: 12 1/4 fluid float inside;

Either format can be passed as a single argument
to the functions and mixins that make up the Susy language.
Maps can even be used as part of the shorthand:

$susy: (
 columns: 12,
 gutters: .25,
 math: fluid,
);

@include layout($susy float inside);

Unless otherwise noted,
most settings can be controlled both globally
(by setting the site-wide default)
or locally
(passed to individual functions and mixins).

Global Defaults

Here are all the global Susy settings
with their default values:

$susy: (
 flow: ltr,
 math: fluid,
 output: float,
 gutter-position: after,
 container: auto,
 container-position: center,
 columns: 4,
 gutters: .25,
 column-width: false,
 global-box-sizing: content-box,
 last-flow: to,
 debug: (
 image: hide,
 color: rgba(#66f, .25),
 output: background,
 toggle: top right,
),
 use-custom: (
 background-image: true,
 background-options: false,
 box-sizing: true,
 clearfix: false,
 rem: true,
)
);

You can set your own global defaults,
or create individual layout maps
to access as needed.

For global settings,
create a $susy variable
with any values that you need.

$susy: (
 columns: 12,
 gutters: .25,
 gutter-position: inside,
)

Layout

A “layout” in Susy is made up of any combination of settings.
Layouts are stored as maps,
but can also be written as shorthand.

Layout [function]

Convert shorthand into a map of settings.

	
function

	

	Format:	layout($layout)

	$layout:	<layout>

// function input
$map: layout(auto 12 .25 inside fluid isolate);

//output
$map: (
 container: auto,
 columns: 12,
 gutters: .25,
 gutter-position: inside,
 math: fluid,
 output: isolate,
);

This is useful any time you need to combine settings
stored in different variables.
It’s not possible to combine two shorthand variables:

// THIS WON'T WORK
$short: 12 .25 inside;
@include layout($short fluid no-gutters);

but it is possible to add a map into the shorthand:

// THIS WILL WORK
$map: layout(12 .25 inside);
@include layout($map fluid no-gutters);

or combine two maps:

$map1: 13 static;
$map2: (6em 1em) inside;
@include layout($map1 $map2);

Layout [mixin]

Set a new layout as the global default.

	
mixin

	

	Format:	layout($layout, $clean)

	$layout:	<layout>

	$clean:	<boolean>

// mixin: set a global layout
@include layout(12 1/4 inside-static);

By default, these new settings are added to your
existing global settings.
Use the $clean argument
to establish new settings from scratch.

With Layout

Temporarily set defaults
for a section of your code.

	
mixin

	

	Format:	with-layout($layout, $clean) { @content }

	$layout:	<layout>

	$clean:	<boolean>

	@content:	Sass content block

@include with-layout(8 static) {
 // Temporary 8-column static grid...
}

// Global settings are restored...

By default, these new settings are added to your
existing global settings.
Use the $clean argument
to establish new settings from scratch.

Susy-Get

	
function

	

	Format:	susy-get($key, $layout)

	$key:	Setting name

	$layout:	<layout>

You can access your layout settings at any time,
using the susy-get function.

$large: layout(80em 24 1/4 inside);
$large-container: susy-get(container, $large);

To access a nested setting like debug/image,
send the full path as a list for the $key argument.

$debug-image: susy-get(debug image);

If no setting is available
(or no $layout is provided)
susy-get falls back to the global user settings,
and finally to the Susy default settings.

Flow

The reading direction of your document.
Layout elements will stack out in the direction of flow,
unless otherwise directed.

	
setting

	

	Key:	flow

	Scope:	global, local

	Options:	rtl | ltr

	Default:	ltr

	ltr

	Layout elements will flow from left to right.

	rtl

	Layout elements will flow from right to left.

Math

Susy can produce either relative widths (fluid percentages)
or static widths (using given units).

	
setting

	

	Key:	math

	Scope:	global, local

	Options:	fluid | static

	Default:	fluid

	fluid

	All internal grid spans will be calculated relative to the container,
and output as % values.

	static

	All internal grid values will be calculated
as multiples of the column-width setting.
If you set column-width to 4em,
your grid widths will be output as em values.

Output

Susy can generate output using different layout techniques.
Currently we have a float module,
with an extension to handle isolation as well.
In the future there could be flexbox, grid, and other output styles.

	
setting

	

	Key:	output

	Scope:	global, local

	Options:	float | isolate

	Default:	float

	float

	Floats are the most common form of layout used on the web.

	isolate

	Isolation is a trick [http://www.palantir.net/blog/responsive-design-s-dirty-little-secret] developed by John Albin Wilkins [http://john.albin.net/]
to help fix sub-pixel rounding [http://tylertate.com/blog/2012/01/05/subpixel-rounding.html] bugs in fluid, floated layouts.
You can think of it like absolute positioning of floats.
We find it to be very useful for spot-checking the worst rounding bugs,
but we think it’s overkill as a layout technique all to itself.

Container

Set the max-width of the containing element.

	
setting

	

	Key:	container

	Scope:	global, local [container only]

	Options:	<length> | auto

	Default:	auto

	<length>

	Set any explicit length (e.g. 60em or 80%),
and it will be applied directly to the container.

	auto

	Susy will calculate the width of your container
based on the other grid settings,
or fall back to 100%.

Warning

For static layouts,
leave container: auto
and set the column-width instead.
Susy will calculate the outer container width for you.
Dividing columns out of a set container width
would leave you open to sub-pixel errors,
and no one likes sub-pixel errors.

Container Position

Align the container relative to it’s parent element
(often the viewport).

	
setting

	

	Key:	container-position

	Scope:	global, local [container only]

	Options:	left | center | right | <length> [*2]

	Default:	center

	left

	Holds container elements flush left,
with margin-left: 0; and margin-right: auto;.

	center

	Centers the container,
by setting both left and right margins to auto.

	right

	Pushes the container flush right,
with margin-right: 0; and margin-left: auto;.

	<length> [*2]

	If one length is given,
it will be applied to both side margins,
to offset the container from the edges of the viewport.
If two values are given,
they will be used as left and right margins respectively.

Columns

Establish the column-count and arrangement for a grid.

	
setting

	

	Key:	columns

	Scope:	global, local

	Options:	<number> | <list>

	Default:	4

	<number>

	The number of columns in your layout.

	<list>

	For asymmetrical grids,
list the size of each column relative to the other columns,
where 1 is a single column-unit.
(1 2) would create a 2-column grid,
with the second column being twice the width of the first.
For a Fibonacci [http://en.wikipedia.org/wiki/Fibonacci_number]-inspired grid, use
(1 1 2 3 5 8 13).

Gutters

Set the width of a gutter relative to columns on your grid.

	
setting

	

	Key:	gutters

	Scope:	global, local

	Options:	<ratio>

	Default:	1/4

	<ratio>

	Gutters are established as a ratio to the size of a column.
The default 1/4 setting will create gutters
one quarter the size of a column.
In asymmetrical grids,
this is 1/4 the size of a single column-unit.

If you want to set explicit column and gutter widths,
write your gutters setting as <gutter-width>/<column-width>.
You can even leave the units attached.

// 70px columns, 20px gutters
$susy: (
 gutters: 20px/70px,
);

Column Width

Optionally set the explicit width of a column.

	
setting

	

	Key:	column-width

	Scope:	global, local

	Options:	<length> | false/null

	Default:	false

	<length>

	The width of one column, using any valid unit.
This will be used in static layouts to calculate all grid widths,
but can also be used by fluid layouts
to calculate an outer maximum width for the container.

	false/null

	There is no need for column-width in fluid layouts
unless you specifically want the container-width
calculated for you.

Gutter Position

Set how and where gutters are added to the layout,
either as padding or margins on layout elements.

	
setting

	

	Key:	gutter-position

	Scope:	global, local

	Options:	before | after | split | inside | inside-static

	Default:	after

	before

	Gutters are added as margin before a layout element,
relative to the flow direction
(left-margin for ltr, right-margin for rtl).
The first gutter on each row will need to be removed.

	after

	Gutters are added as margin after a layout element,
relative to the flow direction.
The last gutter on each row will need to be removed.

	split

	Gutters are added as margin on both sides of a layout element,
and are not removed at the edges of the grid.

	inside

	Gutters are added as padding on both sides of a layout element,
and are not removed at the edges of the grid.

	inside-static

	Gutters are added as static padding on both sides of a layout element,
even in a fluid layout context,
and are not removed at the edges of the grid.

Global Box Sizing

Tell Susy what box model is being applied globally.

	
setting

	

	Key:	global-box-sizing

	Scope:	global

	Options:	border-box | content-box

	Default:	content-box

	content-box

	Browsers use the content-box model unless you specify otherwise.

	border-box

	If you are using the Paul Irish universal border-box [http://www.paulirish.com/2012/box-sizing-border-box-ftw/] technique
(or something similar),
you should change this setting to border-box.
You can also use our border-box-sizing mixin,
and we’ll take care of it all for you.

For more,
see the MDN box-sizing documentation [https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing].

Last Flow

The float-direction for the last element in a row
when using the float output.

	
setting

	

	Key:	last-flow

	Scope:	global

	Options:	from | to

	Default:	to

	from

	This is the default for all other elements in a layout.
In an ltr (left-to-right) flow,
the from-direction is left,
and this setting would float “last” elements to the left,
along with the other elements.

	to

	In many cases (especially with fluid grids),
it can be helpful to float the last element in a row
in the opposite direction.

Debug

Susy has a few tools to help in debugging your layout as you work.
These settings help you control the debugging environment.

	
setting block

	

	Key:	debug

	Scope:	global, local [container only]

	Options:	<map of sub-settings>

$susy: (
 debug: (
 image: show,
 color: blue,
 output: overlay,
 toggle: top right,
),
);

Warning

Grid images are not exact.
Browsers have extra trouble
with sub-pixel rounding on background images.
These are meant for rough debugging,
not for pixel-perfect measurements.
Expect the to side of your grid image
(right if your flow is ltr)
to be off by several pixels.

Debug Image

Toggle the available grid images on and off.

	
setting

	

	Key:	debug image

	Scope:	global, local [container only]

	Options:	show | hide | show-columns | show-baseline

	Default:	hide

	show

	Show grid images,
usually on the background of container elements,
for the purpose of debugging.
If you are using Compass vertical rhythms [http://compass-style.org/reference/compass/typography/vertical_rhythm/]
(or have set your own $base-line-height variable)
Susy will show baseline grids as well.

	hide

	Hide all grid debugging images.

	show-columns

	Show only horizontal grid-columns,
even if a baseline grid is available.

	show-baseline

	Show only the baseline grid,
if the $base-line-height variable is available.

Debug Output

The debug image can be output either as a background on the container,
or as a generated overlay.

	
setting

	

	Key:	debug output

	Scope:	global, local [container only]

	Options:	background | overlay

	Default:	background

	background

	Debugging images will be generated
on on the background of the container element.

	overlay

	Debugging images will be generated as an overlay
using the container’s ::before element.
Initially, the overlay is hidden, until you hover
over the toggle we place
in a corner of the viewport.
Hover over the toggle to make the overlay appear.

Debug Toggle

If you are using the grid overlay option,
Susy will generate a toggle to show/hide the overlay.
Hovering over the toggle will show the overlay.
You can place the toggle in any corner of the viewport
using a combination of top, right, bottom, and left.

	
setting

	

	Key:	debug toggle

	Scope:	global

	Options:	right | left and top | bottom

	Default:	top right

Debug Color

Change the color of columns in the generated grid image.

	
setting

	

	Key:	debug color

	Scope:	global

	Options:	<color>

	Default:	rgba(#66f, .25)

Custom Support

There are several common helpers that you can tell Susy to use,
if you provide them yourself
or through a third-party library like Compass or Bourbon.

Custom Clearfix

Tell Susy to use a global clearfix mixin.

	
setting

	

	Key:	use-custom clearfix

	Scope:	global

	Options:	<boolean>

	Default:	false

	false

	Susy will use an internal micro-clearfix.

	true

	Susy will look for an existing clearfix mixin,
and fallback to the internal micro-clearfix if none is found.

Custom Background Image

Tell Susy to use a global background-image mixin.
This is only used for debugging.

	
setting

	

	Key:	use-custom background-image

	Scope:	global

	Options:	<boolean>

	Default:	true

	false

	Susy will output background-images directly to CSS.

	true

	Susy will look for an existing background-image mixin
(like the ones provided by Compass and Bourbon),
and fallback to plain CSS output if none is found.

Custom Background Options

Tell Susy to use global background-size, -origin, and -clip mixins.
This is only used for debugging.

	
setting

	

	Key:	use-custom background-options

	Scope:	global

	Options:	<boolean>

	Default:	false

	false

	Susy will output background-options directly to CSS.

	true

	Susy will look for existing background-size,
-origin, and -clip mixins
(like the ones provided by Compass and Bourbon),
and fallback to plain CSS output if none is found.

Custom Breakpoint Options

Tell Susy to use a custom breakpoint mixin,
like the one provided by the Breakpoint [http://breakpoint-sass.com/] plugin.

	
setting

	

	Key:	use-custom breakpoint

	Scope:	global

	Options:	<boolean>

	Default:	true

	false

	Susy will use an internal fallback for media-queries.

	true

	Susy will look for existing an breakpoint mixin
like the one provided by the [Breakpoint](http://breakpoint-sass.com) plugin,
and fallback to internal media-query support if none is found.

Custom Box Sizing

Tell Susy to use a global box-sizing mixin.

	
setting

	

	Key:	use-custom box-sizing

	Scope:	global

	Options:	<boolean>

	Default:	true

	false

	Susy will output box-sizing official syntax,
as well as -moz and -webkit prefixed versions.

	true

	Susy will look for an existing box-sizing mixin
(like the ones provided by Compass and Bourbon),
and fallback to mozilla, webkit, and official syntax
if none is found.

Custom Rem

Tell Susy to use the Compass rem support module.

	
setting

	

	Key:	use-custom rem

	Scope:	global

	Options:	<boolean>

	Default:	true

	false

	Susy will output length values directly to CSS.

	true

	Susy will look for an existing rem mixin,
and check the $rhythm-unit and $rem-with-px-fallback settings
provided by Compass,
or fallback to plain CSS output if they aren’t found.

Location

Reference a specific column on the grid
for row edges,
isolation,
or asymmetrical layouts.
Locations keywords don’t require the at flag.

	
setting

	

	Key:	location

	Scope:	local

	Options:	first/alpha | last/omega | <number>

	Default:	null

	first
alpha

	Set location to 1.

	last
omega

	Set the location to the final column,
and any previous columns included by the relevant span.

	<number>

	Set the location to any column-index
between 1 and the total number of available columns.

Box Sizing

Set a new box model on any given element.

	
setting

	

	Key:	box-sizing

	Scope:	local

	Options:	border-box | content-box

	Default:	null

	border-box

	Output box-sizing CSS to set the border-box model.

	content-box

	Output box-sizing CSS to set the content-box model.

Spread

Adjust how many gutters are included in a column span.

	
setting

	

	Key:	spread

	Scope:	local

	Options:	narrow | wide | wider

	Default:	various...

	narrow

	In most cases,
column-spans include the gutters between columns.
A span of 3 narrow covers the width of 3 columns,
as well as 2 internal gutters.
This is the default in most cases.

	wide

	Sometimes you need to include one side gutter in a span width.
A span of 3 wide covers the width of 3 columns,
and 3 gutters (2 internal, and 1 side).
This is the default for several margin/padding mixins.

	wider

	Sometimes you need to include both side gutters in a span width.
A span of 3 wider covers the width of 3 columns,
and 4 gutters (2 internal, and 2 sides).

Gutter Override

Set an explicit one-off gutter-width on an element,
or remove its gutters entirely.

	
setting

	

	Key:	gutter-override

	Scope:	local

	Options:	no-gutters/no-gutter | <length>

	Default:	null

	no-gutters
no-gutter

	Remove all gutter output.

	<length>

	Override the calculated gutter output with an explicit width.

Role

Mark a grid element as a nesting context for child elements.

	
setting

	

	Key:	role

	Scope:	local

	Options:	nest

	Default:	null

	nest

	Mark an internal grid element as a context for nested grids.

Note

This can be used with any grid type,
but it is required for nesting
with split, inside, or inside-static gutters.

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

Shorthand

Susy provides a shorthand syntax
to easily pass arbitrary settings into functions and mixins.
This allows the syntax to stay simple and readable
for the majority of use cases,
and only add complexity if/when you really need it.

// Establish an 80em container
@include container(80em);

// Span 3 of 12 columns
@include span(3 of 12);

// Setup the 960 Grid System
@include layout(12 (60px 20px) split static);

// Span 3 isolated columns in a complex, asymmetrical grid, without gutters
@include span(isolate 3 at 2 of (1 2 3 4 3 2 1) no-gutters);

Overview

In most cases, the syntax order is not important,
but there are a few rules to get you started.
The syntax generally breaks down into three parts.

	
syntax

	

	Shorthand:	$span $grid $keywords;

	span

	A span can be any length,
or (in some cases) a unitless number
representing columns to be spanned.
The specifics change
depending on the function or mixin
where it is being passed.
Some mixins even allow multiple spans,
using the standard CSS TRBL <top right bottom left> syntax.

	grid

	The grid is composed of a Columns setting,
and optional settings for Gutters
and Column Width.
It looks something like this:

// 12-column grid
$grid: 12;

// 12-column grid with 1/3 gutter ratio
$grid: 12 1/3;

// 12-column grid with 60px columns and 10px gutters
$grid: 12 (60px 10px);

// asymmetrical grid with .25 gutter ratio
$grid: (1 2 3 2 1) .25;

	keywords

	The keywords are the easiest.
Most settings have simple keyword values
that can be included in any order —
before, after, or between the span and grid options.

// All the keywords in Susy:

$global-keywords: (
 container : auto,
 math : static fluid,
 output : isolate float,
 container-position : left center right,
 flow : ltr rtl,
 gutter-position : before after split inside inside-static,
 debug: (
 image : show hide show-columns show-baseline,
 output : background overlay,
),
);

$local-keywords: (
 box-sizing : border-box content-box,
 edge : first alpha last omega,
 spread : narrow wide wider,
 gutter-override : no-gutters no-gutter,
 clear : break nobreak,
 role : nest,
);

The global keywords can be used anywhere,
and apply to global default settings.
The local keywords are specific to each individual use.

Layout

The simplest shorthand variation
is used for defining your layout in broad terms.

	
shorthand

	

	Pattern:	<grid> <keywords>

Nothing here is required —
all the settings are optional and have global defaults.
grid and keyword settings work exactly as advertised.

// grid: (columns: 4, gutters: 1/4, column-width: 4em);
// keywords: (math: fluid, gutter-position: inside-static, flow: rtl);
$small: 4 (4em 1em) fluid inside-static rtl;

You can easily convert layouts from shorthand to map syntax
using the Layout function.

Span

Most of Susy’s functions & mixins
are used to calculate or set a width, or span.

	
shorthand

	

	Pattern:	 at <location> of <layout>

Most spans in Susy are either a unitless number
(representing columns)
or an explicit width.
Some of them also require a location
(particularly for asymmetrical grids and isolation).

The standard span syntax looks like this:

// Pattern:
$span: $span at $location of $layout;

// span: 3;
// location: 4;
// layout: (columns: 12, gutters: .25, math: fluid)
$span: 3 at 4 of 12 .25 fluid;

// Only $span is required in most cases
$span: 30%;

The “at” flag comes immediately before the location
(unless the location itself is a keyword),
and everything after the “of” flag
is treated as part of the layout.

Some mixins accept multiple spans,
using the common CSS “top right bottom left” (TRBL) pattern,
or have other specific options.
Those are all documented as part of the function/mixin details.

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

Toolkit

The Susy 2.0 toolkit is built around
our shorthand syntax.
Use the shorthand to control every detail,
and adjust your defaults on-the-fly,
so you are never tied down to just one grid,
or just one output style.

Span [mixin]

Set any element to span a portion of your layout.
For a floated or isolated layout,
this will add necessary floats, widths, and margins.

	
mixin

	

	Format:	span($span) { @content }

	$span:	

	@content:	Sass content block

There are many ways to use the span mixin...

Arbitrary Widths

For the simplest use,
pass any width directly to the mixin:

// arbitrary width
.item { @include span(25%); }

// float output (without gutters)
.item {
 float: left;
 width: 25%;
}

Grid Widths

If you are using a grid,
you can also span columns on the grid:

// grid span
.item { @include span(3); }

// output (7-column grid with 1/2 gutters after)
.item {
 float: left;
 width: 40%;
 margin-right: 5%;
}

Row Edges

When you use a grid with gutters before or after,
you sometimes need to mark the first or last
elements in a row,
so Susy can remove the extra gutters:

// grid span
@include span(last 3);

// output (same 7-column grid)
.item {
 float: right;
 width: 40%;
 margin-right: 0;
}

For legacy reasons,
alpha and omega can be used
in place of first and last.

Context

Context is required any time you are using fluid math,
and nesting grid elements inside other elements:

// 10-column grid
.outer {
 @include span(5);
 .inner { @include span(2 of 5); }
}

The of flag is used to signal context.
The context is always equal to the grid-span of the parent.
In some cases, you can imply changes in context
by nesting elements inside the span tag itself:

// 10-column grid
.outer {
 // out here, the context is 10
 @include span(5) {
 // in here, the context is 5
 .inner { @include span(2); }
 }
}

Nesting

Grids with inside, inside-static, or split gutters
don’t need to worry about the edge cases,
but they do have to worry about nesting.

If an element will have grid-aligned children,
you should mark it as a nest:

// inside, inside-static, or split gutters
.outer {
 @include span(5 nest);
 .inner { @include span(2 of 5); }
}

Location

Asymmetrical grids and isolated output
also need to know the desired location of the span.
In both cases,
use the at flag to set a location.

For isolation,
you can use either an arbitrary width
or a column index (starting with 1).
For asymmetrical grid spans,
the location setting must be a column index:

.width { @include span(isolate 500px at 25%); }
.index { @include span(isolate 3 at 2); }

narrow, wide, and wider

By default,
a grid span only spans the gutters between columns.
So a span of 2 includes 1 internal gutter (narrow).
In some cases you want to span additional gutters on either side.
So that same span of 2
could include the internal gutter,
and one (wide) or both (wider) external gutters.

// grid span
.narrow { @include span(2); }
.wide { @include span(2 wide); }
.wider { @include span(2 wider); }

// width output (7 columns, .25 gutters)
// (each column is 10%, and each gutter adds 2.5%)
.narrow { width: 22.5%; }
.wide { width: 25%; }
.wider { width: 27.5%; }

If you are using inside gutters,
the spans are wide by default
but can be overridden manually.

Other Settings

Use the full keyword
to span the entire context available,
use break to start a new Rows & Edges
by clearing previous floats,
and nobreak to clear none.
Use no-gutters
to remove gutter output from an individual span,
and use border-box or content-box
to output changes in box-sizing
on the fly.

You can set an arbitrary gutter override,
by passing a map (e.g. (gutter-override: 1.5em))
as part of the shorthand syntax.

You can also change the output style,
grid context,
and other global settings on the fly:

// grid span
.item { @include span(isolate 4 at 2 of 8 (4em 1em) inside rtl break); }

// output
.item {
 clear: both;
 float: right;
 width: 50%;
 padding-left: .5em;
 padding-right: .5em;
 margin-left: 25%;
 margin-right: -100%;
}

Span [function]

The span function is identical to the
span mixin,
but returns only the span width value,
so you can use it with custom output.

	
function

	

	Format:	span($span)

	$span:	

.item {
 width: span(2);
 margin-left: span(3 wide);
 margin-right: span(1) + 25%;
}

Gutters

	
function/mixin

	

	Format:	gutters($span)

	Alternate:	gutter($span)

	$span:	

Use gutter or gutters
as a function to return the width of a gutter
given your settings and current context.

// default context
margin-left: gutter();

// nested in a 10-column context
margin-left: gutter(10);

Use the mixin version
to apply gutters to any element.
Gutters are output
as margin or padding
depending on the gutter-position setting.

// default gutters
.item { @include gutters; }

You can also set explicit gutter widths:

// explicit gutters
.item { @include gutters(3em); }

Or use the shorthand syntax
to adjust settings on the fly:

// inside gutters
.item { @include gutters(3em inside); }

// gutters after, in an explicit (10 1/3) layout context
.item { @include gutters(10 1/3 after); }

Container

	
function/mixin

	

	Format:	container($layout)

	$layout:	<layout>

Use the container function
to return a container-width based on an optional layout argument,
or your global settings.

// global settings
width: container();

// 12-column grid
$large-breakpoint: container(12);

Use the mixin to
apply container settings to an element directly.

body {
 @include container(12 center static);
}

Note that static math requires a valid
column-width setting

Nested Context

	
function/mixin

	

	Function:	nested($span)

	Mixin:	nested($span) { @content }

	$span:	

	@content:	Sass content block

Sass is not aware of the DOM,
or the specific markup of your site,
so Susy mixins don’t know about any ancestor/child relationships.
If your container creates a grid context
that is different from the default,
you will need to pass that new context explicitly to nested elements.

You can pass that context along with the shorthand syntax.

body { @include container(8); }
.span { @include span(3 of 8); }

But that gets repetitive if you have large blocks of code
using a given context.
The nested mixin provides a shortcut
to change the default context for a section of code.

@include nested(8) {
 .span { @include span(3); }
}

Context is a bit more complex
when you are using asymmetrical grids,
because we need to know
not just how many columns,
but which columns are available.

.outer {
 @include span(3 of (1 2 3 2 1) at 2);

 // context is now (2 3 2)...
 .inner { @include span(2 of (2 3 2) at 1); }
}

The nested function can help you
manage context more easily,
without having to calculate it yourself.

$grid: (1 2 3 2 1);

.outer {
 $context: 3 of $grid at 2;
 @include span($context);

 @include nested($context) {
 .inner { @include span(2 at 1); }
 }
}

Global Box Sizing

Set the box-sizing on a global [http://www.paulirish.com/2012/box-sizing-border-box-ftw/] selector,
and set the global-box-sizing
to match.

	
mixin

	

	Format:	global-box-sizing($box [, $inherit])

	Shortcut:	border-box-sizing([$inherit])

	$box:	content-box | border-box

	$inherit:	[optional] true | false

Setting the optional argument, $inherit, to true
will still globally set the box-sizing, but in
a way such that a component can easily override the
global box-sizing by setting its own box-sizing
property. By setting box-sizing once on the
component, all nested elements within the component
will also be modified. The default behavior, where
$inherit is false, would only update the
box-sizing of the component itself. Nested
elements are not affected when $inherit is
false.

You can pass a box-sizing argument
to the span mixin
as part of the shorthand syntax,
and Susy will set the element’s box-sizing to match.

// input
.item { @include span(25em border-box); }

// sample output (depending on settings)
.item {
 float: left;
 width: 25em;
 box-sizing: border-box;
}

We highly recommend using
a global [http://www.paulirish.com/2012/box-sizing-border-box-ftw/] border-box setting,
especially if you are using inside gutters
of any kind.

// the basics with default behavior:
* { box-sizing: border-box; }

// the basics with $inherit set to true:
html { box-sizing: border-box; }
* { box-sizing: inherit; }

Susy needs to know what box model you are using,
so the best approach is to set global box sizing
using one of Susy’s shortcuts.

// the flexible version:
@include global-box-sizing(border-box);

// the shortcut:
@include border-box-sizing;

If you want to change the global box-sizing by hand,
or it has already been changed by another library,
update the
global-box-sizing setting
to let Susy know.

If you need to supprot IE6/7,
there is a simple polyfill [https://github.com/Schepp/box-sizing-polyfill]
to make it work.

Rows & Edges

Floated layouts sometimes require
help maintaining rows and edges.

Break

	
mixin

	

	Format:	break()

	Reset:	nobreak()

	Keywords:	break | nobreak

To create a new row,
you need to clear all previous floats.
This can usually be done using keywords
with the span mixin.
When you need to apply a row-break on it’s own,
we have a break mixin.

.new-line { @include break; }

If you ever need to override that,
you can use nobreak
to set clear: none;.

.no-new-line { @include nobreak; }

Both break and nobreak
can also be used as keywords
with the span mixin.

First

	
mixin

	

	Format:	first($context)

	Alternate:	alpha($context)

	$context:	<layout>

Note

Only useful when
gutter-position
is set to before.

When gutter-position
is set to before
we need to remove the gutter
from the first element in every row.
This can often be solved
using a keyword in the span mixin.
Sometimes you need to set an item as first
outside the span mixin.

.first { @include first; }

We also support an alpha mixin
with the same syntax and output.

Both first and alpha
can also be used as keywords
with the span mixin.

Last

	
mixin

	

	Format:	last($context)

	Alternate:	omega($context)

	$context:	<layout>

Note

Only required when
gutter-position
is set to after,
but can be useful in any context
to help with sub-pixel rounding issues.

When gutter-position
is set to after
we need to remove the gutter
from the last element in every row,
and optionally float in the opposite direction.
This can often be solved
using a keyword in the span mixin.
Sometimes you need to set an item as last
outside the span mixin.

.last { @include last; }

We also support an omega mixin
with the same syntax and output.

Both last and omega
can also be used as keywords
with the span mixin.

Full

	
mixin

	

	Format:	full($context)

	$context:	<layout>

This is a shortcut for
span(full),
used to create elements
that span their entire context.

.last { @include full; }

full can also be used as a keyword
with the span mixin.

Margins

Shortcut mixins
for applying left/right margins.

Pre

	
mixin

	

	Format:	pre($span)

	Alternate:	push($span)

	$span:	

Add margins before an element,
depending on the flow direction.

.example1 { @include pre(25%); }
.example2 { @include push(25%); }
.example3 { @include pre(2 of 7); }
.example4 { @include push(2 of 7); }

Post

	
mixin

	

	Format:	post($span)

	$span:	

Add margins after an element,
depending on the flow direction.

.example1 { @include post(25%); }
.example2 { @include post(2 of 7); }

Pull

	
mixin

	

	Format:	pull($span)

	$span:	

Add negative margins before an element,
pulling it against the direction of flow.

.example1 { @include pull(25%); }
.example2 { @include pull(2 of 7); }

Squish

	
mixin

	

	Format:	squish($pre [, $post])

	$pre:	

	$post:	[optional]

Shortcut for adding both pre
and post margins
to the same element.

// equal pre and post
.example1 { @include squish(25%); }

// distinct pre and post
.example2 { @include squish(1, 3); }

When they share identical context,
you can pass pre and post spans
in the same argument.
This is often the case,
and saves you from repeating yourself.

// shared context
.shared {
 @include squish(1 3 of 12 no-gutters);
}

// distinct context
.distinct {
 @include squish(1 at 2, 3 at 6);
}

Padding

Shortcut mixins
for applying left/right padding.

Note

The interaction between padding and width changes
depending on your given box-model.
In the browser-default content-box model,
width and padding are added together,
so that an item with span(3) and prefix(2)
will occupy a total of 5 columns.
In the recommended border-box model,
padding is subtracted from the width,
so that an item with span(3) will always
occupy 3 columns,
no matter what padding is applied.

Prefix

	
mixin

	

	Format:	prefix($span)

	$span:	

Add padding before an element,
depending on the flow direction.

.example1 { @include prefix(25%); }
.example2 { @include prefix(2 of 7); }

Suffix

	
mixin

	

	Format:	suffix($span)

	$span:	

Add padding after an element,
depending on the flow direction.

.example1 { @include suffix(25%); }
.example2 { @include suffix(2 of 7); }

Pad

	
mixin

	

	Format:	pad($prefix [, $suffix])

	$prefix:	

	$suffix:	

Shortcut for adding both prefix
and suffix padding
to the same element.

// equal pre and post
.example1 { @include pad(25%); }

// distinct pre and post
.example2 { @include pad(1, 3); }

When they share identical context,
you can pass pre and post spans
in the same argument.
This is often the case,
and saves you from repeating yourself.

// shared context
.shared {
 @include pad(1 3 of 12 no-gutters);
}

// distinct context
.distinct {
 @include pad(1 at 2, 3 at 6);
}

Bleed

	
mixin

	

	Format:	bleed($bleed)

	$bleed:	TRBL

Apply negative margins
and equal positive padding,
so that element borders and backgrounds “bleed”
outside of their containers,
without the content be affected.

This uses the standard span shorthand,
but takes anywhere from one to four widths,
using the common TRBL pattern
from CSS.

// input
.example1 { @include bleed(1em); }
.example2 { @include bleed(1em 2 20px 5% of 8 .25); }

// output
.example1 {
 margin: -1em;
 padding: 1em;
}

.example2 {
 margin-top: -1em;
 padding-top: 1em;
 margin-right: -22.5%;
 padding-right: 22.5%;
 margin-bottom: -20px;
 padding-bottom: 20px;
 margin-left: -5%;
 padding-left: 5%;
}

When possible,
the bleed mixins will attempt
to keep gutters intact.
Use the no-gutters keyword
to override that behavior.

Bleed-x

	
mixin

	

	Format:	bleed-x($bleed)

	$bleed:	LR

A shortcut for applying only left and right
(horizontal) bleed.

// input
.example { @include bleed-x(1em 2em); }

// output
.example {
 margin-left: -1em;
 padding-left: 1em;
 margin-right: -2em;
 padding-right: 2em;
}

Bleed-y

	
mixin

	

	Format:	bleed-y($bleed)

	$bleed:	TB

A shortcut for applying only top and bottom
(vertical) bleed.

// input
.example { @include bleed-y(1em 2em); }

// output
.example {
 margin-top: -1em;
 padding-top: 1em;
 margin-bottom: -2em;
 padding-bottom: 2em;
}

Isolate

	
mixin

	

	Format:	isolate($isolate)

	$isolate:	

Isolation is a layout technique based on floats,
but adjusted to address sub-pixel rounding issues [http://www.palantir.net/blog/responsive-design-s-dirty-little-secret].
Susy supports it as a global output setting,
or as a Shorthand keyword for the span mixin,
or as a stand-alone mixin.

The $isolate argument takes a standard
span shorthand,
but any length or grid-index given
is interpreted as an isolation location
(unless location is otherwise specified with the at flag).
The function returns a length value.

// input
.function {
 margin-left: isolate(2 of 7 .5 after);
}

// output
.function {
 margin-left: 15%;
}

And the mixin returns
all the properties required for isolation.

// input
.mixin { @include isolate(25%); }

// output
.mixin {
 float: left;
 margin-left: 25%;
 margin-right: -100%;
}

Gallery

	
mixin

	

	Format:	gallery($span, $selector)

	$span:	

	$selector:	(nth-) child* | of-type

Gallery is a shortcut for creating gallery-style layouts,
where a large number of elements are laid out on a consistent grid.
We take the standard span shorthand
and apply it to all the elements,
using nth-child or nth-of-type selectors
and the isolation technique to arrange them on the grid.

// each img will span 3 of 12 columns,
// with 4 images in each row:
.gallery img {
 @include gallery(3 of 12);
}

Warning

The nth-child selector
has issues on iOS8 Safari [http://stackoverflow.com/questions/26032513/ios8-safari-after-a-pushstate-the-nth-child-selectors-not-works].
Use nth-of-type for iOS8 support.

Show Grid

	
mixin

	

	Format:	show-grid($grid)

	$grid:	<layout>

The easiest way to show you grids
is by adding a keyword
to your container mixin.
If you need to apply the grid separately,
the show-grid mixin takes exactly the same
layout shorthand arguments,
and can output the debugging grid image
as either a background, or a triggered overlay.

body {
 @include container;
 @include show-grid(overlay);
}

Warning

Grid images are not exact.
Browsers have extra trouble with
sub-pixel rounding on background images.
These are meant for rough debugging,
not for pixel-perfect measurements.
Expect the to side of your grid image
(right if your flow is ltr)
to be off by several pixels.

Breakpoint

Susy has built-in media-query handling,
and also supports integration with the Breakpoint [http://breakpoint-sass.com/] plugin.
To install Breakpoint,
follow the instuctions on their site.

Susy Breakpoint

	
mixin

	

	Format:	susy-breakpoint($query, $layout, $no-query)

	$query:	media query shorthand (see susy-media)

	$layout:	<layout>

	$no-query:	<boolean> | <string> (see susy-media)

susy-breakpoint() acts as a shortcut
for changing layout settings at different media-query breakpoints,
using either susy-media or
the third-party Breakpoint [http://breakpoint-sass.com/] plugin.

If you are using the third-party plugin,
see Breakpoint: Basic Media Queries [https://github.com/Team-Sass/breakpoint/wiki/Basic-Media-Queries] and
Breakpoint: No Query Fallbacks [https://github.com/Team-Sass/breakpoint/wiki/No-Query-Fallbacks] for details.

This mixin acts as a wrapper,
adding media-queries and
changing the layout settings for any susy functions or mixins
that are nested inside.

@include susy-breakpoint(30em, 8) {
 // nested code uses an 8-column grid,
 // starting at a 30em min-width breakpoint...
 .example { @include span(3); }
}

Susy Media

	
mixin

	

	Format:	susy-media($query, $no-query)

	$query:	<min-width> [<max-width>] | <string> | <pair> | <map>

	$no-query:	<boolean> | <string>

The susy-media mixin provides basic media-query handling,
and handles the built-in functionality for susy-breakpoint.

	$query

	A single length will be used as a min-width query,
two lengths will become min- and max- width queries,
a property-value pair, or map of pairs
will become (property: value) queries,
and a lonely string will be used directly.

// min
// ---
@include susy-media(30em) { /*...*/ }

@media (min-width: 30em) { /*...*/ }

// min/max pair
// ------------
@include susy-media(30em 60em) { /*...*/ }

@media (min-width: 30em) and (max-width: 60em) { /*...*/ }

// property/value pair
// -------------------
@include susy-media(min-height 30em) { /*...*/ }

@media (min-height: 30em) { /*...*/ }

// map
// ---
@include susy-media((
 min-height: 30em,
 orientation: landscape,
)) { /*...*/ }

@media (min-height: 30em) and (orientation: landscape) { /*...*/ }

	$no-query

	true will render the contents to css without any media-query.
This can be useful for creating separate no-query fallback files.

For inline fallbacks using a target class,
pass in a string (e.g. .no-mqs) to use as your fallback selector.
The contents will be output both inside a media-query
and again inside the given selector.

This can be set globally with the $susy-media-fallback variable.

susy-media also supports named media-queries,
which can be set using the $susy-media variable:

$susy-media: (
 min: 20em,
 max: 80em 60em,
 string: 'screen and (orientation: landscape)',
 pair: min-height 40em,
 map: (
 media: screen,
 max-width: 30em
),
);

@include susy-media(min);

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

Susy One

This is documentation for the old syntax,
used in Susy 1.

If you are using Susy 2
and want use the old syntax,
change your import from susy to susyone.

// With Susy 2 installed...
@import "susyone";

Basic Settings

	Container: The root element of a Grid.

	Layout: The total number of Columns in a grid.

	Grid Padding: Padding on the sides of the Grid.

	Context: The number of Columns spanned by the parent element.

	Omega: Any Grid Element spanning the last Column in its Context.

Total Columns

The number of Columns in your default Grid Layout.

// $total-columns: <number>;
$total-columns: 12;

	<number>: Unitless number.

Column Width

The width of a single Column in your Grid.

// $column-width: <length>;
$column-width: 4em;

	<length>: Length in any unit of measurement (em, px, %, etc).

Gutter Width

The space between Columns.

// $gutter-width: <length>;
$gutter-width: 1em;

	<length>: Units must match $column-width.

Grid Padding

Padding on the left and right of a Grid Container.

// $grid-padding: <length>;
$grid-padding: $gutter-width; // 1em

	<length>: Units should match the container width
($column-width unless $container-width is set directly).

Functions

Where a mixin returns property/value pairs, functions return simple values
that you can put where you want, and use for advanced math.

Columns

Similar to span-columns mixin,
but returns the math-ready % multiplier.

// columns(<$columns> [, <$context>, <$style>])
.item { width: columns(3,6); }

	<$columns>: The number of Columns to span,

	<$context>: The Context.
Default: $total-columns.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Gutter

The % width of one gutter in any given context.

// gutter([<$context>, <$style>])
.item { margin-right: gutter(6) + columns(3,6); }

	<$context>: The Context.
Default: $total-columns.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Space

Total % space taken by Columns, including internal AND external gutters.

// space(<$columns> [, <$context>, <$style>])
.item { margin-right: space(3,6); }

	<$columns>: The number of Columns to span,

	<$context>: The Context.
Default: $total-columns.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Basic Mixins

Container

Establish the outer grid-containing element.

// container([$<media-layout>]*)
.page { @include container; }

	<$media-layout>: Optional media-layout shortcuts
(see Responsive Grids below).
Default: $total-columns.

Span Columns

Align an element to the Susy Grid.

// span-columns(<$columns> [<omega> , <$context>, <$padding>, <$from>, <$style>])
nav { @include span-columns(3,12); }
article { @include span-columns(9 omega,12); }

	<$columns>: The number of Columns to span.
- <omega>: Optional flag to signal the last element in a row.

	<$context>: Current nesting Context.
Default: $total-columns.

	<$padding>: Optional padding applied inside an individual grid element.
Given as a length (same units as the grid)
or a list of lengths (from-direction to-direction).
Default: false.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Omega

Apply to any omega element as an override.

// omega([<$from>])
.gallery-image {
 @include span-columns(3,9); // each gallery-image is 3 of 9 cols.
 &:nth-child(3n) { @include omega; } // every third image completes a row.
}

	<$from>: The origin direction of your document flow.
Default: $from-direction.

Nth-Omega

Apply to any element as an nth-child omega shortcut.
Defaults to :last-child.

// nth-omega([<$n>, <$selector>, <$from>])
.gallery-image {
 @include span-columns(3,9); // each gallery-image is 3 of 9 cols.
 @include nth-omega(3n); // same as omega example above.
}

	<$n>: The keyword or equation to select: [first | only | last | <equation>].
An equation could be e.g. 3 or 3n or '3n+1'.
Note that quotes are needed to keep complex equations
from being simplified by Compass.
Default: last.

	<$selector>: The type of element, and direction to count from:
[child | last-child | of-type | last-of-type].
Default: child.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

Responsive Mixins

	Breakpoint: A min- or max- viewport width at which to change Layouts.

	Media-Layout: Shortcut for declaring Breakpoints and Layouts in Susy.

// $media-layout: <min-width> <layout> <max-width> <ie-fallback>;
// - You must supply either <min-width> or <layout>.
$media-layout: 12; // Use 12-col layout at matching min-width.
$media-layout: 30em; // At min 30em, use closest fitting layout.
$media-layout: 30em 12; // At min 30em, use 12-col layout.
$media-layout: 12 60em; // Use 12 cols up to max 60em.
$media-layout: 30em 60em; // Between min 30em & max 60em, use closest layout.
$media-layout: 30em 12 60em;// Use 12 cols between min 30em & max 60em.
$media-layout: 60em 12 30em;// Same. Larger length will always be max-width.
$media-layout : 12 lt-ie9; // Output is included under ``.lt-ie9`` class,
 // for use with IE conditional comments
 // on the <html> tag.

	<$min/max-width>: Any length with units, used to set media breakpoints.

	<$layout>: Any (unitless) number of columns to use for the grid
at a given breakpoint.

	<$ie-fallback>: Any string to use as a fallback class
when mediaqueries are not available.
Do not include a leading “.” class-signifier,
only the class name (“lt-ie9”, not “.lt-ie9”).
This can be anything you want:
“no-mediaqueries”, “ie8”, “popcorn”, etc.

At-Breakpoint

At a given min- or max-width Breakpoint, use a given Layout.

// at-breakpoint(<$media-layout> [, <$font-size>]) { <@content> }
@include at-breakpoint(30em 12) {
 .page { @include container; }
}

	<$media-layout>: The Breakpoint/Layout combo to use (see above).

	<$font-size>: Browsers interpret em-based media-queries
using the browser default font size (16px in most cases).
If you have a different base font size for your site,
we have to adjust for the difference.
Tell us your base font size, and we’ll do the conversion.
Default: $base-font-size.

	<@content>: Nested @content block will use the given Layout.

Layout

Set an arbitrary Layout to use with any block of content.

// layout(<$layout-cols>) { <@content> }
@include layout(6) {
 .narrow-page { @include container; }
}

	<$layout-cols>: The number of Columns to use in the Layout.

	<@content>: Nested @content block will use the given Layout.

Set Container Width

Reset the width of a Container for a new Layout context.
Can be used when container() has already been applied to an element,
for DRYer output than using container again.

// set-container-width([<$columns>, <$style>])
@include container;
@include at-breakpoint(8) {
 @include set-container-width;
}

	<$columns>: The number of Columns to be contained.
Default: Current value of $total-columns depending on Layout.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

With Grid Settings

Use different grid settings for a block of code -
whether the same grid at a different breakpoint,
or a different grid altogether.

// with-grid-settings([$<columns>, $<width>, <$gutter>, <$padding>]) { <@content> }
@include with-grid-settings(12,4em,1.5em,1em) {
 .new-grid { @include container; }
};

	<$columns>: Overrides the $total-columns setting for all contained elements.

	<$width>: Overrides the $column-width setting for all contained elements.

	<$gutter>: Overrides the $gutter-width setting for all contained elements.

	<$padding>: Overrides the $grid-padding setting for all contained elements.

	<@content>: Nested @content block will use the given grid settings.

Box Sizing

Border-Box Sizing

Set the default box-model to border-box,
and adjust the grid math accordingly.

// border-box-sizing()
@include border-box-sizing;

This will apply border-box model to all elements
(using the star selector)
and set $border-box-sizing to true.
You can use the variable on it’s own to adjust the grid math,
in cases where you want to apply the box-model separately.

Isolation

Isolate

Isolate the position of a grid element relative to the container.
This should be used in addition to span-columns
as a way of minimizing sub-pixel rounding errors in specific trouble locations.

// isolate(<$location> [, <$context>, <$from>, <$style>])
@include span-columns(4); // 4-columns wide
@include isolate(2); // positioned in the second column

	<$location>: The container-relative column number to position on.

	<$context>: Current nesting Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Isolate Grid

Isolate a group of elements in a grid (such as an image gallery)
using nth-child or nth-of-type for positioning.
Provide the column-width of each element,
and Susy will determine the positioning for you.

// isolate-grid(<$columns> [, <$context>, <$selector>, <$from>, <$style>])
.gallery-item {
 @include isolate-grid(3);
}

	<$columns>: The number of Columns for each item to span.

	<$context>: Current nesting Context.
Default: $total-columns.

	<$selector>: either ‘child’ or ‘of-type’.
Default: child.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Padding Mixins

Prefix

Add Columns of empty space as padding before an element.

// prefix(<$columns> [, <$context>, <$from>, <$style>])
.box { @include prefix(3); }

	<$columns>: The number of Columns to be added as padding before.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Suffix

Add columns of empty space as padding after an element.

// suffix(<$columns> [, <$context>, <$from>, <$style>])
.box { @include suffix(2); }

	<$columns>: The number of Columns to be added as padding after.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Pad

Shortcut for adding both Prefix and Suffix padding.

// pad([<$prefix>, <$suffix>, <$context>, <$from>, <$style>])
.box { @include pad(3,2); }

	<$prefix>: The number of Columns to be added as padding before.

	<$suffix>: The number of Columns to be added as padding after.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Bleed

Add negative margins and matching positive padding to an element,
so that its background “bleeds” outside its natural position.

// bleed(<$width> [<$sides>, <$style>])
@include bleed(2);

	<$width>: The number of Columns or arbitrary length to bleed.
Use 2 of 12 syntax for context in nested situations.

	<$sides>: The sides of the element that should bleed.
Default: left right.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Margin Mixins

Pre

Add columns of empty space as margin before an element.

// pre(<$columns> [, <$context>, <$from>, <$style>])
.box { @include pre(2); }

	<$columns>: The number of Columns to be added as margin before.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Post

Add columns of empty space as margin after an element.

// post(<$columns> [, <$context>, <$from>, <$style>])
.box { @include post(3); }

	<$columns>: The number of Columns to be added as margin after.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Squish

Shortcut to add empty space as margin before and after an element.

// squish([<$pre>, <$post>, <$context>, <$from>, <$style>])
.box { @include squish(2,3); }

	<$pre>: The number of Columns to be added as margin before.

	<$post>: The number of Columns to be added as margin after.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Push

Identical to pre.

// push(<$columns> [, <$context>, <$from>, <$style>])
.box { @include push(3); }

Pull

Add negative margins before an element, to pull it against the flow.

// pull(<$columns> [, <$context>, <$from>, <$style>])
.box { @include pull(2); }

	<$columns>: The number of Columns to be subtracted as margin before.

	<$context>: The Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Reset Mixins

Reset Columns

Resets an element to default block behaviour.

// reset-columns([<$from>])
article { @include span-columns(6); } // articles are 6 cols wide
#news article { @include reset-columns; } // but news span the full width
 // of their container

	<$from>: The origin direction of your document flow.
Default: $from-direction.

Remove-Omega

Apply to any previously-omega element
to reset it’s float direction and margins
to match non-omega grid elements.
Note that unlike omega,
this requires a context when nested.

// remove-omega([<$context>, <$from>, <$style>])
.gallery-image {
 &:nth-child(3n) { @include remove-omega; } // 3rd images no longer complete rows.
}

	<$context>: Current nesting Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Remove Nth-Omega

Apply to any previously nth-omega element
to reset it’s float direction and margins
to match non-omega grid elements.
Note that unlike omega,
this requires a context when nested.

// remove-nth-omega([<$n>, <$selector>, <$context>, <$from>, <$style>])
.gallery-image {
 @include remove-nth-omega(3n); // same as remove-omega example above.
}

	<$n>: The keyword or equation to select: [first | only | last | <equation>].
An equation could be e.g. 3 or 3n or '3n+1'.
Note that quotes are needed to keep a complex equation from being simplified by Compass.
Default: last.

	<$selector>: The type of element, and direction to count from:
[child | last-child | of-type | last-of-type].
Default: child.

	<$context>: Current nesting Context.
Default: $total-columns.

	<$from>: The origin direction of your document flow.
Default: $from-direction.

	<$style>: Optionally return static lengths for grid calculations.
Default: $container-style.

Debugging

Susy Grid Background

Show the Susy Grid as a background-image on any container.

// susy-grid-background();
.page { @include susy-grid-background; }

	If you are using the <body> element as your Container,
you need to apply a background to the <html> element
in order for this grid-background to size properly.

	Some browsers have trouble with sub-pixel rounding on background images.
Use this for checking general spacing, not pixel-exact alignment.
Susy columns tend to be more accurate than gradient grid-backgrounds.

Container Override Settings

Container Width

Override the total width of your grid with an arbitrary length.

// $container-width: <length> | <boolean>;
$container-width: false;

	<length>: Length in em, px, %, etc.

	<boolean>: True or false.

Container Style

Override the type of shell containing your grid.

// $container-style: <style>;
$container-style: magic;

	<style>: magic | static | fluid.
	magic: Susy’s magic grid has a set width,
but becomes fluid rather than overflowing the viewport at small sizes.

	static: Susy’s static grid will retain the width defined in your settings
at all times.

	fluid: Susy’s fluid grid will always be based on the viewport width.
The percentage will be determined by your grid settings,
or by $container-width, if either is set using % units.
Otherwise it will default to auto (100%).

Direction Override Settings

From Direction

The side of the Susy Grid from which the flow starts.
For ltr documents, this is the left.

// $from-direction: <direction>;
$from-direction: left;

	<direction>: left | right

Omega Float

The direction that Omega elements should be floated.

// $omega-float: <direction>;
$omega-float: opposite-position($from-direction);

	<direction>: left | right

Compass Options

Base Font Size

From the Compass Vertical Rhythm [http://compass-style.org/reference/compass/typography/vertical*rhythm/] module,
Susy uses your base font size to help manage
em-based media-queries.

// $base-font-size: <px-size>;
$base-font-size: 16px;

	<px-size>: Any length in px.
This will not actually effect your font size
unless you use other Vertical Rhythm tools,
we just need to know.
See Compass Docs [http://compass-style.org/reference/compass/typography/vertical*rhythm/#const-base-font-size] for further usage details.

Browser Support

Susy recognizes all the Compass Browser Support [http://compass-style.org/reference/compass/support/] variables,
although only IE6 and IE7 have special cases attached to them currently.

// $legacy-support-for-ie : <boolean>;
// $legacy-support-for-ie6 : <boolean>;
// $legacy-support-for-ie7 : <boolean>;
$legacy-support-for-ie : true;
$legacy-support-for-ie6 : $legacy-support-for-ie;
$legacy-support-for-ie7 : $legacy-support-for-ie;

	<boolean>: true | false

Breakpoint Output

If you are compiling seperate files for IE-fallbacks,
it can be useful to output only the modern code in one file
and only the fallbacks in another file.
You can make at-breakpoint do exactly that
by using the following settings.

$breakpoint-media-output

Turn off media-query output for IE-only stylesheets.

// $breakpoint-media-output: <boolean>;
$breakpoint-media-output: true;

	<boolean>: true | false

$breakpoint-ie-output

Turn off media-query fallback output for non-IE stylesheets.

// $breakpoint-ie-output: <boolean>;
$breakpoint-ie-output: true;

	<boolean>: true | false

$breakpoint-raw-output

Pass through raw output
without media-queries or fallback classes
for IE-only stylesheets.

// $breakpoint-raw-output: <boolean>;
$breakpoint-raw-output: false;

	<boolean>: true | false

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

Upgrade Path

Susy 2.x supports two syntax options, side by side.
If you want to use the latest release
but keep the old syntax,
change your import from susy to susyone.

// With Susy 2.x installed...
@import "susyone";

If you ever want to upgrade to the new syntax,
change the import back to susy,
and follow these instructions:

Settings

In SusyOne, settings were handled as variables.

// the basics
$columns: 12;
$column-width: 4em;
$gutter-width: 1em;
$grid-padding: 1em;

// advanced
$container-width: false;
$container-style: magic;
$from-direction: left;
$omega-float: right;

// media-query fallbacks
$breakpoint-media-output: true;
$breakpoint-ie-output: true;
$breakpoint-raw-output: false;

Removed Settings

All the media-query fallback settings have been dropped.
Susy 2 no longer manages media-queries,
but we play well with other media-query libraries,
and include special
Breakpoint integration.
See their documentation [https://github.com/Team-Sass/breakpoint/wiki/Basic-Media-Queries] for handling legacy browsers.

We’ve also dropped $grid-padding as a setting.
If you want to add padding to your container,
you can easily do it by hand.

Translation

The remaining settings can be easily mapped
into the new syntax.

$susy: (
 // the basics
 columns: $total-columns,
 gutters: $gutter-width / $column-width,
 column-width: $column-width,

 // advanced
 container: $container-width,
 math: if($container-style == magic, fluid, $container-style),
 flow: if($from-direction == right, rtl, ltr),
 last-flow: if($omega-float == $from-direction, from, to),
);

There are a few differences to note in the translation.

	You can set either column-width or container (or neither),
but never both.
One can be calculated from the other,
but if you set both we don’t know which one should have priority.

	If you are using static math
we highly recommend that you use column-width
rather than container.

	The old magic style can be achieved
through a combination of fluid math
and a width setting (either column-width or container).

See Settings for more details.

Functions

Columns / Space

The columns and space functions from SusyOne
have now been merged into the new
span function.

// columns/space: [, <context>, <math>]
$columns: columns(3, 6, static);
$space: space(2, 7, fluid);

// span
$span-columns: span(3 of 6 static);
$span-space: span(2 of 7 fluid wide);

The difference between columns and space
in the old syntax
is now covered by the narrow and wide
spread keywords
(with narrow being the default in most cases).

Gutter

The gutter function remains,
but the syntax has changed.

// gutter([<context>, <math>])
$old: gutter(6, static);
$new: gutter(6 static);

Basic Mixins

Container

The container mixin remains,
but media-query support has been removed.
For now, at least,
you’ll have to establish one container at a time
inside media-query declarations.

In most (fluid/magic) cases,
we set up the container for our largest layout,
and let it flex fluidly from there.
If you need to change explicit sizes at explicit breakpoints,
we recommend using the container function
to override only the width at different breakpoints.

// old
body {
 @include container(4, 50em 8, 80em 12);
}

// new (simple)
body { @include container(12); }

// new (with breakpoint plugin)
body {
 @include container(4);
 @include breakpoint(50em) { max-width: container(8); }
 @include breakpoint(80em) { max-width: container(12); }
}

Span Columns

The span-columns mixin has been renamed
span,
and has much more power and flexibility.
The old $padding argument has been removed,
but everything else tranlates cleanly.
Note that $from took right or left as options,
where the new flow setting takes rtl or ltr.

// span-columns(<$columns> [<omega> , <$context>, <$padding>, <$from>, <$style>])
.old { @include span-columns(3 omega, 12, $padding, left, static); }
.new { @include span(last 3 of 12 ltr static); }

Omega

The omega mixin still esists,
and should work without any changes.
For readability, omega can be replaced with last,
but that’s up to you.

nth-omega has been deprecated,
in favor of omega with nth-child selectors.

.old { @include nth-omega(last); }
.new:last-child { @include omega; }

Responsive Design

At-Breakpoint

Media-query support has been removed from the Susy core,
because there are so many more powerful and flexible
query-handling plugins.
We recommend using Breakpoint [http://breakpoint-sass.com/],
and we’ve written a translation of at-breakpoint
(now called susy-breakpoint)
that integrates smoothly with their controls.

.old {
 @include at-breakpoint(30em 8 60em) {
 // your 8-column media-query content...
 }
}

.new {
 @include susy-breakpoint(30em 60em, 8) {
 // your 8-column media-query content...
 }
}

This looks like a minor change,
but it exposes a lot more power in both the media-queries
and the changes to layout.
See the Breakpoint [http://breakpoint-sass.com/] docs for more detail on the former,
and use our shorthand to control the latter
in detail.

Layout & With-Grid-Settings

the layout and with-grid-settings mixins
have merged to become with-layout.
They continue to work much like before,
with extra power exposed
through the shorthand syntax.

// old
@include layout(12) { /* your 12-column layout */ }
@include with-grid-settings(8, 4em, 1em) { /* your custom layout */ }

// new
@include with-layout(12) { /* your 12-column layout... */ }
@include with-layout(8 (4em 1em)) { /* your custom layout */ }

There is still a mixin named layout,
but it changes the global layout settings
rather than wrapping a layout block.

// global layout
@include layout(12);

/* your 12-column layout... */

Set Container Width

The set-container-width mixin
can be replaced by applying the
container function
to the width or max-width of your containing element.

// old
.fluid { @include set-container-width(8, fluid); }
.static { @include set-container-width(12, static); }

// new
.fluid { max-width: container(8); }
.static { width: container(12); }

Grid Helpers

Border-Box Sizing

The setting has changed
from the boolean $border-box-sizing
to the new global-box-sizing,
but the border-box-sizing mixin
works exactly like before.

Isolate

Isolation no longer requires it’s own mixin,
as it can be controlled now through the
span mixin for most cases.
In those cases where you do still need a distinct mixin,
isolate remains much like before.

.old { @include isolate(2, 12, left, static); }
.new { @include isolate(2 of 12 ltr static); }

Isolate Grid

the isolate-grid mixin has been renamed
gallery,
but is very similar in use.

.gallery-old { @include isolate-grid(3, 12, child, left, fluid); }
.gallery-new { @include gallery(3 of 12 left fluid, child); }

Only the selector argument remains split off from the others.

Margins and Padding

All the margin and padding mixins —
pre, post, push, pull,
prefix, suffix, pad, squish —
remain unchanged,
except that we now use the shorthand syntax
in place of all the arguments.

See the new
margins / padding documentation
for details.

Bleed

Besides upgrading to the new shorthand,
the bleed mixin now also supports
TRBL syntax
for applying to different sides,
along with bleed-x and bleed-y shortcuts
for horizontal and vertical bleed.

.old { @include bleed(2, left right); }
.new { @include bleed-x(2); }

Susy Grid Background

This has been renamed show-grid,
and otherwise remains intact.

Reset-Columns / Remove-Omega

Susy One included reset-columns
and remove-omega,
but both have been deprecated.
Rather than removing styles,
override them with the desired behavior.
The full and span
mixins should give you everything you need
for overriding spans and omegas, respectively.

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Susy 2.2.12 documentation

DIY Susy

Susy is built in three distinct modules:
math, output, and syntax.
The math and output layers form the core of Susy —
so abstract that they could be used for any grid system.
That’s exactly what we hope will happen.

The syntax modules hold it all together.
In the same way that you can theme a website,
applying different CSS to the same markup,
you can theme Susy by writing your own syntax
(or extending one of ours).

We’ve written a powerful new Default Syntax,
and we’re keeping the old Susy One available as well.
But why stop there?
You can create your own unique syntax,
or port over the language of existing tools like
oocss [http://oocss.org/], singularity [http://singularity.gs/], zurb [http://foundation.zurb.com/], neat [http://neat.bourbon.io/], zen [http://zengrids.com/],
blueprint [http://www.blueprintcss.org/], 960gs [http://960.gs/], etc.,
without ever leaving Susy.

Core Settings

While the Susy language module
is built to support layouts of all kinds,
we only need the math module for grid basics.

The Susy core has two settings:
columns, and
gutters.

$symmetrical: (
 columns: 12,
 gutters: 1/4,
);

$asymmetrical: (
 columns: (1 3 4 6 2),
 gutters: .5,
);

Both columns and gutters are set
as unitless numbers,
but you can think of them as “grid units” —
as they are all relative to each other.
1/4 gutter is a quarter the size of 1 column.

Is Symmetrical

Returns null if a grid is asymmetrical.

	$columns: <number> | <list>

It’s not a difficult test,
but it’s important to know what you’re dealing with.

// input
$sym: is-symmetrical(12);
$asym: is-symmetrical(2 4 6 3);

// output
$sym: 12;
$asym: null;

Susy Count

Find the number of columns in a given layout.

	$columns: <number> | <list>

This is only necessary for asymmetrical grids,
since symmetrical are already defined by their count,
but the function handles both styles
for the sake of flexibility.

	<number>:
Susy grid layouts are defined by columns.
In a symmetrical grid
all the columns are the same relative width,
so they can be defined by the number of columns.
We can have an “8-column” grid, or a “12-column” grid.

// input
$count: susy-count(12);

// output
$count: 12;

	<list>:
Asymmetrical grids are more complex.
Since each column can have a different width
relative to the other columns,
we need to provide more detail about the columns.
We can do that with a list of relative (unitless sizes).
Each number in the list
represents a number of grid units
relative to the other numbers.

// input
$count: susy-count(1 2 4 3 1);

// output
$count: 5;

For asymmetrical grids,
the number of columns is egual to the list length.
This isn’t complex math.

Column Sum

Find the total sum of column-units in a layout.

	$columns: <number> | <list>

	$gutters: <ratio>

	$spread: false/narrow | wide | wider

Rather than counting how many columns there are,
the susy-sum function calculates
the total number of grid units covered.
It’s a simple matter of adding together all the columns
as well as the gutters between them.

// input
$susy-sum: susy-sum(7, .5);

// output: 7 + (6 * .5) = 10
$susy-sum: 10;

Most grids have one less gutter than column,
but that’s not always true.
The spread argument allows you to also include
the gutters on either side.
While the default narrow spread subtracts a gutter,
the wide spread
(common when using split gutters)
has an equal number of columns and gutters.

// input
$wide-sum: susy-sum(7, .5, wide);

// output: 7 + (7 * .5) = 10.5
$wide-sum: 10.5;

On rare occasions
you may actually want gutters on both sides,
which we call a wider spread.

// input
$wider-sum: susy-sum(7, .5, wider);

// output: 7 + (8 * .5) = 11
$wider-sum: 11;

This is all possible with asymmetrical grids as well.

// input
$susy-sum: susy-sum(1 2 4 2, 1/3);

// output: (1 + 2 + 4 + 2) + (3 * 1/3) = 10
$susy-sum: 10;

Column Span

Return a subset of columns at a given location.

	$span: <number>

	$location: <number>

	$columns: <number> | <list>

This is only necessary for asymmetrical grids,
since a symmetrical subset is always equal to the span,
but the function handles both styles
for the sake of flexibility.

The location is given
as a column index, starting with 1,
so that 1 is the first column,
2 is the second, and so on.

// input
$sym-span: susy-span(3, 2, 7);
$asym-span: susy-span(3, 2, (1 2 3 5 4));

// output: 3 columns, starting with the second
$sym-span: 3;
$asym-span: (2 3 5);

Susy

Find the sum of given slice.

	$span: <number>

	$location: <number>

	$columns: <number> | <list>

	$gutters: <ratio>

	$spread: false/narrow | wide | wider

This is where it all comes together.
susy is the basic building-block
for any grid system.
It combines susy-span with susy-sum
to return the unitless width of a given slice.

// input
$sym-span: susy(3, 2, 7, .5);
$asym-span: susy(3, 2, (1 2 3 5 4), .5);

// output
$sym-span: 4;
$asym-span: 11;

All you need to do is add units...

Build Something New

That’s really all it takes to build a grid system.
The rest is just syntax.
Start with susy().

$sum: susy(3, 2, 7);

If you want static grids,
you can multiply the results
by the width of one column.

// static
$column-width: 4em;
$static: $sum * $column-width;

For a fluid grid,
divide the results by the context span sum,
to get a percentage.

// fluid
$context: susy(7);
$fluid: percentage($sum / $context);

That’s all it takes.
Now go build yourself a grid system!

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	Susy 2.2.12 documentation

Changelog

2.2.13 - Apr 10 2018

	Support Sass 3.5+ get-function requirements.

	Doc updates & typo fixes.

2.2.12 - Jan 25 2016

	Fix bug in validation-errors.

2.2.11 - Jan 15 2016

	Fix bug with susy-inspect.

2.2.10 - Jan 7 2016

	Add $pixel-values-only setting to SusyOne,
for turning off Compass rem support.

2.2.6 - Sep 1 2015

	Fix a bug with overlay grids.

	Fix a bug with 0-width split gutters.

	Other small bug fixes.

2.2.5 - May 14 2015

	Pass grid arguments to overlay positioning mixin.

2.2.3 - Apr 28 2015

	Work around libsass fraction bug.

2.2.2 - Jan 23 2015

	Fix bug in npm package.

2.2.1 - Jan 14 2015

	Release npm susy package.

	Add global $susy-media map for creating named breakpoints.

	Add internal media-query support for susy-breakpoint
without requiring the Breakpoint plugin.

	susy-breakpoint mixin no longer requires $layout argument.
By default, no changes will be made to your existing layout.

	Update global-box-sizing and the legacy border-box-sizing
mixins to optionally take another argument, $inherit. This new
argument is a boolean value that defaults to false, meaning the
behavior of these mixins will not change by default. The default
behavior sets all elements to use the specified box-sizing,
which can only be changed explicitly on a per-element basis. By passing
in $inherit as true, the box-sizing is set on the
html element, and all other elements inherit this property. This
means that the box-sizing can be changed at the component level
and all nested elements will inherit this change. This cascading
effect can be prevented by explicitly setting box-sizing on the
exceptions within the nested context.

	Add su import at root level.

	Both su and susy work with the latest LibSass master branch (3.0.2+).
There are a few exceptions:
	The susysone syntax

	overlay grid output

	The inherit option for global-box-sizing & border-box-sizing

2.1.3 - Jul 16 2014

	Baseline grid image uses px instead of %.

	Updated Sass dependency to work with 3.4.

2.1.2 - Apr 28 2014

	first and last keywords output 0 margins instead of null
so they can be used to override previous span settings.

	Output :before / :after rather than ::before / ::after
to support IE8.

	Load Susy paths in Compass if required, otherwise add it to SASS_PATH.
[Adrien Antoine [https://github.com/Alshten]]

	Compass 1.0 config no longer needs to require 'susy'.
Susy is registered with Compass automatically.

	Add $clean argument to layout and with-layout mixins,
for creating new layout contexts from a clean slate.

2.1.1 - Mar 13 2014

	Rename core math functions, and prepare for decomposition.
	column-count() => susy-count()

	column-sum() => susy-sum()

	column-span() => susy-slice()

	column-span-sum() => susy()

	Add tests for core math validation.

2.0.0 — Mar 10 2014

	New susyone tests for split-columns, is-default-layout, medialayout, columns,
relative-width, columns width and nth-of-type (using True).

	Sass 3.3.0 (Maptastic Maple)

	Rename local 2.0 variables that conflict with global susyone settings.

	Susyone container mixin applies full container settings at every breakpoint.

2.0.0.rc.2 — Mar 4 2014

	Fix templates_path and compass project templates

	Fix Compass “rem” integration to respect $rhythm-units setting.

2.0.0.rc.1 — Feb 7 2014

	Add browser support module with settings to use-custom mixins
for background-image,
background-options (-size, -clip, -origin),
box-sizing, clearfix, and rem.
If you set to false,
we’ll make sure everything works well on modern browsers.
If you set to true,
we’ll check for existing mixins (e.g. from Compass or Bourbon)
to provide more powerful legacy support.

	Fix bugs caused by Sass changes to str-index(),
#{&}, and @at-root.

	Fix Bower dependencies, and add support for Sache.

	Remove legacy Compass polyfils from susyone code.

2.0.0.beta.3 — Jan 10 2014

	Fix a bug making show-grid unaware of local debug/output keywords.

	Added Susyone syntax for those that need to use the old Susy syntax,
with updated Sass and Compass.
	@import 'susyone';

2.0.0.beta.2 — Jan 6 2014

	Allow nesting of Susy settings.

	show-grid mixin can output either background or overlay grids.

	Add isolate function to return isolation offset width.

	Fix a bug with last output for split-gutter layouts.

	Fix a bug with split-gutter span(), and narrow/wider keywords.

	Fix a bug with bleed and null + inside gutters.

	bleed output uses TRBL shorthand when possible.

	Clean up and document the core math functions.

	Document upgrade path, core-math, and DIY grids.

BREAKING:

	Move debug settings into $susy: (debug: (<settings>));.

	Replace show-grid setting with new debug: image setting.

	Add debug: output setting and keywords
to toggle between background and overlay grid images.

	Remove grid-overlay mixin.
	Becomes part of show-grid mixin.

	Doesn’t take $selector argument —should be nested instead.

	Can still be used multiple times.

	isolate mixin now interprets span argument as location,
unless location is otherwise specified.
	isolate(2) is the same as isolate(at 2).

	isolate(25%) will isolate at 25%.

	Rename setting controls for consistency.
	set-grid => layout

	use-grid => with-layout

	pad and squish use RL shorthand for shared context.
	pad(1, 3 of 12) => pad(1 3 of 12)

2.0.0.beta.1 — Dec 24 2013

	Add susy-breakpoint mixin for basic integration with Breakpoint [http://breakpoint-sass.com/].
	Syntax: breakpoint($query, $layout, $no-query)
where $query and no-query follow the Breakpoint syntax,
and $layout uses the Susy syntax for defining grids.

	Add layout function to convert layouts from shorthand syntax to map.

	Add full keyword shortcut for full-width spans.

	BREAKING: Remove unclear row and unrow mixins.

	Add break and nobreak mixins/keywords
to create a new line before any element in the layout.

	BREAKING: Rename is-container: container setting/value to role: nest.

	BREAKING: Rename layout-method setting to output.

	BREAKING: Rename layout-math setting to math.

	Clean up division between math/output/syntax layers.

	gutters and container-position can be set to null.

	If gutters are set to 0 or null, they will have no output.

	BREAKING: full output matches span patterns.

	BREAKING: Debug grids are hidden by default.

	BREAKING: Remove nth-last/-omega/-first/-alpha
as confusing & out-of-scope.
Format your nth-selectors manually to apply first/last mixins.

	Gutter mixins/functions can accept context-only (without the “of” syntax):
	gutters(of 10 .25) == gutters(10 .25)

	Unitless numbers are used for context.

	Lengths (with units) are used as explicit gutter-overrides.

	BREAKING: Re-purposed susy-set as reverse of susy-get —
to adjust a single setting.
Example: @include susy-set(gutter-position, inside);

	Replace global box-sizing setting with global-box-sizing.
	Let Susy know what box model you are using globally.

	box-sizing can still be passed as a keyword argument.

	Add global-box-sizing() mixin to set your global box model.
	Example: @include global-box-sizing(border-box);

	You can still use the legacy @include border-box-sizing; as a shortcut.

	Uses your global setting as a default.

	Updates your global setting to match, if you pass a different value.

	gallery and span mixins take global-box-sizing into account.

2.0.0.alpha.6 — Dec 5 2013

	Rewrite syntax parsing so parser and resulting maps are shared across Susy.

	Fix explicit-span bug causing large gutters.

	Padding mixins now respect inside gutters.

Backwards Incompatible:

	Removed gutters $n keyword in shorthand syntax
for setting explicit gutters.
Use (gutter-override: $n) map instead.

2.0.0.alpha.5 — Nov 25 2013

	Compass is no longer a dependency.
	Only registers as a compass extension if compass is present.

	Any mixin/function that accepts natural language syntax also accepts maps.

	Maps and natural language can be mixed:
	$large: (columns: 12, gutters: .5);

	span(3 $large no-gutters)

	Add full mixin for full-width spans.

Backwards Incompatible:

	Requires Sass 3.3

	Default settings are handled with a Sass map on the $susy variable.
Example: $susy: (columns: 12, gutters: .25) etc.

	bleed now takes standard span syntax, with multiple (TRBL) spans.
	e.g. bleed(1em 2 of 8) for 1em top/bottom and 2-columns left/right.

	Add bleed-x/bleed-y mixins for horizontal and vertical shortcuts.

	Span arguments now accept narrow, wide, or wider keywords.
	The wide keyword replaces the old outer keyword.

	This setting has been re-named from outer to spread.

	Re-wrote grid debugging
	More concise & accurate output for symmetrical grids.

	Changed grid-background() to show-grid()/show-grids()

	Changed overlay-grid() to grid-overlay()

	Moved settings into $debug: (color: rgba(#66f, .25), toggle: top right);

	Removed overlay-position setting.

	Only display vertical-rhythms when $base-line-height is available.

	split gutters are no longer removed at the grid edges.
	first and last are not special cases for split gutter-handling.

	pass the container argument to wrappers you plan to nest inside.

	first/alpha/last/omega/nth- mixins require grid context.

2.0.0.alpha.4 — Sept 4 2013

	Add bleed mixin.

	Fix bug with fluid inside-gutter calculations.

	$last-flow setting controls the flow direction of row-ending elements.

	background-grid-output now accepts $line-height argument.

	Compass modules are imported as needed.

	grid-background, grid-overlay, grid-background-output,
& $grid-background-color
have been renamed to remiain consistent and avoid conflicts with Compass:
	grid-background => background-grid

	grid-overlay => overlay-grid

	grid-background-output => background-grid-output

	$grid-background-color => $grid-color

	span mixing accepts nested @content, and uses nested context.

	Add inside-static option for static gutters in otherwise fluid grids.

	gutters mixin uses span syntax, accepts explicit gutter span.

	Explicit gutter-overrides are divided when gutters are split/inside.

2.0.0.alpha.3 — July 9 2013

	row now includes clearfix, and unrow removes clearfix.

	gallery output should override previous gallery settings.

	Removed nth-gallery and isolate-gallery in favor of single,
isolated gallery mixin.

	Add padding-span syntax: prefix, suffix, and pad.

	Add margin-span syntax: pre, post, push, pull, and squish.

	New gutters mixin adds gutters to an element.

	gutter function now returns half-widths when using split/inside gutters.

	Add outer keyword to span syntax,
to return span-width including gutters.
	Works with both span mixin and span function.

	Replaces Susy 1.0 space function.

	Add comrehensive unit tests, using True [http://miriamsuzanne.com/true/].

	Improve fall-abck handling of ommitted arguments.

	Add container function to return a given container’s width.

	Add auto keyword to override $container-width,
otherwise respect existing width.

	Renamed $isolate to $layout-method
	No longer accepts boolean.

	Accepts keywords isolate and (default) float.

	Renamed $static to $layout-math
	No longer accepts boolean.

	Accepts keywords static (use given units)
and (default) fluid (use % units).

	Add show-columns and show-baseline keywords
to $show-grids setting.
show will show both columns/baseline, default is show-columns.

2.0.0.alpha.2 — May 7 2013

	Added gutter <length>/gutters <length>
to override the attached gutter width on a single span.
NOTE: gutters 0 is not the same as no-gutters.
0 is an output value, no-gutters removes output.

	Added container span option
to remove inside gutters from nesting containers.

	Added before/after/split/inside/no-gutters gutter options.

	Added gallery mixin for auto-generating gallery layouts.

	Moved grid-backgrounds into language layer, and made them syntax-aware.

	Added row/unrow, first/last, alpha/omega,
nth-first/nth-last, and nth-alpha/nth-omega.

	Added container and span mixins with new syntax.

	Added syntax-aware math functions (span/gutter/outer-span).

	Added rough translate-susy1-settings mixin.

	Moved syntax-specific math into language layer.

	Fleshed-out new language syntax.

	Added get-grid, set-grid, and use-grid
and declaring and managing settings.

	Remove breakpoint core requirement (will come back as option)

2.0.0.alpha.1 — Jan 26 2013

Susy 2.0 was re-written from the ground up.

	Functioning math engine

	Initial string parsing for natural syntax

	Float/Isolation output methods

	Removed all ECHOE/RAKE stuff in favor of vanilla .gemspec

	Added Ruby based String Split function

	Added Sass based grid-add function, to add grids à la Singularity

	Added default variables

1.0.5 — Nov 27 2012

	Add support for rem-units.

	Clean-up quoted arguments.

	Fix a few bugs related to the override settings.

1.0.4 — Nov 3 2012

	Fix bug in nested mixins that adjust support
(e.g. nth-omeg inside at-breakpoint).

	Remove non-ie experimental support in at-breakpoint ie-fallback output.

1.0.3 — Oct 20 2012

	Fix Compass dependencies.

1.0.2 — Oct 20 2012

	Fix a bug with container-outer-width ignoring $columns argument.

	Turn off legacy-ie support inside CSS3 selectors (nth-omega etc).

1.0.1 — Sept 12 2012

	Fix a bug in the relationship
between $container-width and $border-box-sizing,
so that grid-padding is subtracted from the width in certain cases.

	Reset right margin to auto rather than 0 with remove-omega.

1.0 — Aug 14 2012

This release is loaded with new features, but don’t let that fool you. Susy
just became shockingly simple to use.

The gem name has changed from compass-susy-plugin to susy.
First uninstall the old gem, then install the new one.
If you have both gems installed, you will get errors.

Semantics:

We re-arranged the code
in order to make the syntax simpler and more consistent:

	$total-cols is now $total-columns.

	$col-width is now $column-width.

	$side-gutter-width is now $grid-padding
and gets applied directly to the grid container.

	un-column & reset-column mixins have merged into reset-columns.

	columns has been renamed span-columns
to resolve the conflict with CSS3 columns.
See other improvements to span-columns below.

We also removed several bothersome requirements:

	The alpha mixin is no longer needed. Ever.

	The omega no longer takes a $context argument.

	full has been removed entirely.
Elements will be full-width by default.
You can add clear: both; back in as needed.

	side-gutter() is no longer needed.
You can use the $grid-padding setting directly.

Upgrade:

That’s all you need in order to upgrade from Susy 0.9.

	Uninstall and re-install the gem.

	Find and replace the semantic changes listed above.

You’re done! Stop worrying about all that “nested vs. root” bullshit,
and start playing with the new toys!

If you use the $from directional arguments
directly in the span-columns mixin,
there may be one more change to make.
See below:

New Features:

	span-columns supports new features:
	“omega” can be applied directly through the $columns argument.

	Internal padding can be added through the $padding argument.

	This pushes the $from argument from third position into fourth.

	at-breakpoint allows you to change layouts at media breakpoints.

	container accepts multiple media-layout combinations as a shortcut.

	layout allows you to use a different layout at any time.

	with-grid-settings allows you to change any or all grid settings.

	set-container-width does what it says, without the other container code.

	$breakpoint-media-output, $breakpoint-ie-output,
and $breakpoint-raw-output
settings help manage the different outputs from at-breakpoint
when you have IE-overrides living in a file of their own.

	border-box-sizing will apply the popular * { box-sizing: border-box }
universal box-model fix, as well as changing the Susy $border-box-model
setting for you, so Susy knows to adjust some math.

	The space() function can be used anywhere you need column+gutter math.

	push/pull/pre/post/squish mixins help manage margins.

	use the nth-omega mixin to set omega on any nth-child, nth-of-type,
first, last, or only element.

	remove-omega and remove-nth-omega will remove
the omega-specific styles from an element.

	$container-width will override the width of your container
with any arbitrary length.

	$container-style will override the type of grid container
(magic, fluid, fixed, static, etc) to use.

0.9 — Apr 25 2011

Everything here is about simplicity. Susy has scaled back to it’s most basic
function: providing flexible grids. That is all.

Deprecated:

	The susy/susy import is deprecated in favor of simply importing susy.

	The show-grid import is deprecated in favor of CSS3 gradient-based
grid-images. You can now use the susy-grid-background mixin. See below.

Removed:

	Susy no longer imports all of compass.

	Susy no longer establishes your baseline and no longer provides a reset.
All of that is in the Compass core. You can (and should!) keep using them,
but you will need to import them from compass.

New:

	Use susy-grid-background mixin on any container to display the grid.
This toggles on and off with the same controls that are used by the compass
grid-background module.

0.9.beta.3 — Mar 16 2011

Deprecated:

	The susy/reset import has been deprecated
in favor of the Compass core compass/reset import.

	The susy mixin has been deprecated.
If you plan to continue using vertical-rhythms,
you should replace it with the establish-baseline mixin
from the Compass Core.

Removed:

	The vertical-rhythm module has moved into compass core.
The API remains the same, but if you were importing it directly,
you will have to update that import.
($px2em was removed as part of this, but didn’t make it into core).

	The defaults template has been removed as ‘out-of-scope’.
This will not effect upgrading in any way,
but new projects will not get a template with default styles.

New Features:

	Susy now supports RTL grids and bi-directional sites
using the $from-direction variable (default: left)
and an optional additional from-direction argument on all affected mixins.
Thanks to @bangpound for the initial implementation.

	Susy is now written in pure Sass! No extra Ruby functions included!
Thanks to the Sass team for making it possible.

0.8.1 — Sep 24 2010

	Fixed typos in tutorial and _defaults.scss

0.8.0 — Aug 13 2010

Deprecated:

	The skip-link was deprecated as it doesn’t belong in Susy.

	All the IE-specific mixins have been deprecated,
along with the $hacks variable.
Hacks are now used in the default mixins as per Compass.

	The hide mixin was deprecated in favor of the Compass hide-text mixin.

Other Changes:

	inline-block-list will be moved to the compass core soon.
In preparation, I’ve cleaned it up some.
You can now apply a padding of “0” to override previous padding arguments.
You can also use inline-block-list-container
and inline-block-list-item as you would
with the Compass horizontal-list mixins.

	The $align arguments have been removed
from both the susy and container mixins.
Text-alignment is no longer used or needed in achieving page centering.
That was a cary-over from the IE5 Mac days.

	The container mixin now uses the pie-clearfix
compass mixin to avoid setting the overflow to hidden.

	Default styles have been cleaned up to account
for better font stacks and typography, html5 elements,
vertically-rhythmed forms, expanded print styles,
use of @extend, and overall simplification.

0.7.0 — Jun 01 2010

	updated documentation

0.7.0.rc2 — May 13 2010

	Fixes a bug with grid.png and a typo in the readme. Nothing major here.

0.7.0.rc1 — May 12 2010

	template cleanup & simplification - no more pushing CSSEdit comments, etc.

	expanded base and defaults with better fonts & styles out-of-the-box

	expanded readme documentation.
This will expand out into a larger docs/tutorial site in the next week.

0.7.0.pre8 — Apr 20 2010

	mostly syntax and gem cleanup

	added un-column mixin to reset elements previously declared as columns.

	added rhythm mixin as shortcut for leaders/trailers. accepts 4 args:
leader, padding-leader, padding-trailer, trailer.

	added a warning on alpha
to remind you that alpha is not needed at nested levels.

0.7.0.pre7 — Apr 13 2010

	Requires HAML 3 and Compass 0.10.0.rc2

	Internal syntax switched to scss. This will have little or no effect on users.
You can still use Susy with either (Sass/Scss) syntax.

	$default-rhythm-border-style overrides default rhythm border styles

	Better handling of sub-pixel rounding for IE6

0.7.0.pre6 — Mar 29 2010

	Added +h-borders() shortcut for vertical_rhythm +horizontal-borders()

	Fixed vertical rhythm font-size typo (thanks @oscarduignan)

	Added to template styles, so susy is already in place from the start

0.7.0.pre5 — Mar 19 2010

	Expanded and adjusted _vertical_rhythm.sass
in ways that are not entirely backwards compatible.
Check the file for details.

	_defaults.sass is re-ordered from inline to block.

	:focus defaults cleaned up.

	README and docs updated.

0.7.0.pre4 — Jan 20 2010

Update: pre2 was missing a file in the manifest. Use pre4.

Update: Forgot to note one change:
+susy is no longer assigned to the body tag,
but instead at the top level of the document
(not nested under anything).

Warning: This update is not backwards compatible.
We’ve changed some things. You’ll have to change some things.
Our changes were fairly major in cleaning up the code -
yours will be minor and also clean up some code.

Added:

	new _vertical_rhythm.sass (thanks to Chris Eppstein)
provides better establishing of the baseline grid,
as well as mixins to help you manage it.

	!px2em has replaced px2em() - see below.

Removed:

	px2em() has been removed and replaced with a simple variable
!px2em which returns the size of one pixel
relative to your basic em-height.
Multiply against your desired px dimensions
(i.e. border-width = !px2em*5px will output the em-equivalent of 5px).

	!base_font_size_px and !base_line_height_px
have been replaced with !base_font_size and !base_line_height
which take advantage of sass’s built-in unit handling.

	!grid_units is not needed,
as you can now declare your units directly
in the other grid _width variables.
Use any one type of units in declaring your grid.
The units you use will be used in setting the container size.

Once you’ve upgraded, before you compile your files, make these changes:

	remove the “_px” from the font-size and line-height variables,
and add “px” to their values.

	remove the !grid_units variable
and add units to your grid variable values.

	find any uses of px2em() and replace them with something.

	enjoy!

0.7.0.pre1 — Nov 30 2009

Not a lot of new functionality here –
it all moved over to Compass 0.10.0 –
mostly just cleaning it up to match.

	simplified the default styles
and gave them their own project template (_defaults.sass).

	defaults not imported by ie.sass,
as ie.sass should be cascading on top of screen.sass anyway

	changed the syntax to match CSS and Compass
(property: replaces :property)

	added more inline documentation and brought tutorial up to date

	moved CSS3 module over to Compass

	import the compass HTML5 reset along with the normal reset by default
(because Susy loves the future)

	little internal management fixes and so on and so on…

Older

Not documented here. Check the commit log...

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	Susy 2.2.12 documentation

Index

 A
 | B
 | C
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | R
 | S
 | T
 | W

A

 	

 	after

 	alpha

 	

 	auto

B

 	

 	background

 	before

 	

 	border-box

C

 	

 	center

 	

 	content-box

F

 	

 	first

 	float

 	

 	fluid

 	from

G

 	

 	grid

H

 	

 	hide

I

 	

 	inside

 	inside-static

 	

 	isolate

K

 	

 	keywords

L

 	

 	last

 	left

 	

 	ltr

N

 	

 	narrow

 	nest

 	

 	no-gutter

 	no-gutters

O

 	

 	omega

 	

 	overlay

R

 	

 	right

 	

 	rtl

S

 	

 	show

 	show-baseline

 	show-columns

 	

 	span

 	split

 	static

T

 	

 	to

W

 	

 	wide

 	

 	wider

 Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

search.html

 Navigation

 		
 index

 		Susy 2.2.12 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 | Miriam Eric Suzanne.
 Created using Sphinx 1.2.

_static/plus.png

_static/down-pressed.png

_static/comment.png

